Seventh Semester B.E. Degree Examination, December 2010 Computer Integrated Manufacturing

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- a. Define and explain automation. Describe three basic types of automated manufacturing systems. (10 Marks)
 - b. Explain the mathematical model of product life cycle.

(10 Marks)

- 2 a. Classify and explain work part transport mechanisms, with examples. (10 Marks)
 - b. Explain different types of control functions used in an automated flow line. (10 Marks)
- 3 a. Explain and differentiate between the upper bound and lower bound approach, with reference to the automated flow line. (10 Marks)
 - b. A 20 station transfer line is divided into two stages of 10 stations each. The ideal cycle time of each stage is $T_C = 1.2$ min. All the stations in the line have the same probability of stopping, p = 0.005. Assume that the down time, $T_d = 8.0$ min is constant when a breakdown occurs. Using the upper bound approach, compute the line efficiency for the following buffer capacities: i) b = 0 ii) $b = \infty$ iii) b = 10 iv) b = 100 (10 Marks)
- 4 a. Explain the following with reference to line balancing:

(10 Marks)

- i) Minimum rational work element
- ii) Precedence diagram
- iii) Balance delay
- b. In a plant, a product is to be assembled as per the following data:

Element	1	2	3	4	5	6	7	8	9	10
Time 'Te' min	5	3	8	2	1	6	4	5	3	6
Immediate predecessor	-	1	1	2	2	3	4, 5	3, 5	7, 8	6, 9

- i) Construct the precedence diagram.
- ii) If the cycle time is 10 min, find the number of stations required.
- iii) Compute the balance delay of the line, using the largest candidate method. (10 Marks)

PART - B

- 5 a. Explain with neat sketches, the following part feeding devices of automated assembly systems: i) Vibratory bowl feeder ii) Selector and orienter
 - iii) Escapement and placement devices

(10 Marks)

b. Explain vehicle guidance methods used in AGV, for automated manufacturing systems.

(10 Marks)

- 6 a. With a block diagram, explain the general procedure in a retrieval computer aided process planning system. (10 Marks)
 - b. Discuss the fundamental concepts and input to the MRP system.

(10 Marks)

7 a. Describe salient features of CNC systems.

(10 Marks)

b. Discuss the advantages and disadvantages of NC systems.

(10 Marks)

8 a. With neat sketches, discuss the common robot configurations.

- (12 Marks)
- b. Explain resolution, accuracy and repeatability, as applied to robots.
- (08 Marks)

